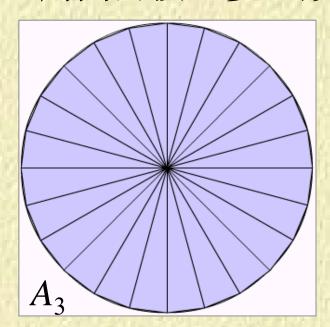
§ 1. 4 数列的极限

- 一、数列极限的定义
- 二、收敛数列的性质

一、数列极限的定义

❖引例

如何用渐近的方法求圆的面积S? 用圆内接正多边形的面积近似圆的面积S.



 A_1 表示圆内接正6边形面积, A_2 表示圆内接正12边形面积, A_3 表示圆内接正24边形面积,

 A_n 表示圆内接正 $6\times 2^{n-1}$ 边形面积,

显然n越大, A_n 越接近于S.

数列的定义

定义 按一定次序排列的无穷多个数 x_1, x_2, Λ x_n, Λ 称为无穷数列, 简称数列. 可简记为 $\{x_n\}$. 其中的每个数称为数列的项, x_n 称为通项(一般项).

数列举例: $2,4,8,\Lambda$ $,2^{n}$, Λ ; $\{2^{n}\}$. $0,\frac{1}{2},\frac{2}{3},\Lambda$ $,\frac{n-1}{n},\Lambda$; $\{\frac{n-1}{n}\}$. $1,-1,1,\Lambda$ $,(-1)^{n+1},\Lambda$; $\{(-1)^{n+1}\}$. $2,\frac{1}{2},\frac{4}{3},\Lambda$ $,\frac{n+(-1)^{n-1}}{n},\Lambda$; $\{\frac{n+(-1)^{n-1}}{n}\}$.

3

❖数列极限的通俗定义

当n无限增大时,如果数列 $\{x_n\}$ 的一般项 x_n 无限接近于常数a,则常数a称为数列 $\{x_n\}$ 的极限,或称数列 $\{x_n\}$ 收敛于a,记为

$$\lim_{n\to\infty} x_n = a.$$

例如

$$\lim_{n\to\infty}\frac{n}{n+1}=1,$$

$$\lim_{n\to\infty}\frac{1}{2^n}=0,$$

$$\lim_{n \to \infty} \sqrt[n]{2} = \lim_{n \to \infty} 2^{\frac{1}{n}} = 2^{0} = 1$$

例1 考察数列 $2, \frac{1}{2}, \frac{4}{3}, \frac{3}{4}, L$ 的变化趋势.

通项公式 $x_n = \frac{n + (-1)^{n-1}}{n}$. $|x_n - 1| = \frac{1}{n}$, $\lim_{n \to \infty} x_n = 1$:

问题: 当 n 无限增大时, {x_n} 是否无限接近于某一确定的数值? 如何用数学语言刻画"无限接近".

当n无限增大时, x_n 无限接近于a.

 \Rightarrow 当n增大到一定程度以后, $|x_n-a|$ 能小于事先给定的任意小的正数.

给定
$$\frac{1}{100}$$
, 只要 $n > 100$ 时,有 $|x_n - 1| < \frac{1}{100}$,
给定 $\frac{1}{1000}$,只要 $n > 1000$ 时,有 $|x_n - 1| < \frac{1}{1000}$,
给定 $\varepsilon > 0$,只要 $n > N(=[\frac{1}{2}])$ 时,有 $|x_n - 1| < \varepsilon$ 成立.

CANAL WARE

数列的极限

当n无限增大时, x_n无限接近于a.

 \Rightarrow 当n增大到一定程度以后, $|x_n-a|$ 能小于事先给定的任意小的正数.

引进记号: ∀ --- 对每一个或任给的; ∃ --- 存在.

数列 $\{x_n\}$ 无限接近数 a 的数学描述:

 $\forall \varepsilon > 0$, 是否 $\exists N > 0$, 使当 n > N 时, 恒有 $|x_n - a| < \varepsilon$.

❖数列极限的精确定义

设 $\{x_n\}$ 为一数列,如果存在常数a,对于任意给定的正数 ε ,总存在正整数N,使得当n>N时,不等式

$$|x_n-a|<\varepsilon$$

都成立,则称常数a是数列 $\{x_n\}$ 的极限,或者称数列 $\{x_n\}$ 收敛于a,记为

$$\lim_{n\to\infty} x_n = a \ \vec{\boxtimes} \ x_n \to a \ (n\to\infty).$$

注: 当n无限增大时, x_n无限接近于a.

 \Rightarrow 当n增大到一定程度以后, $|x_n-a|$ 能小于事先给定的任意小的正数.

❖数列极限的精确定义

设 $\{x_n\}$ 为一数列,如果存在常数a,对于任意给定的正数 ε ,总存在正整数N,使得当n>N时,不等式

$$|x_n-a|<\varepsilon$$

都成立,则称常数a是数列 $\{x_n\}$ 的极限,或者称数列 $\{x_n\}$ 收敛于a,记为

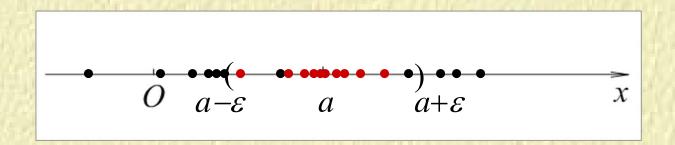
如果不存在这样的常数a, 就说数列 $\{x_n\}$ 没有极限, 或说数列 $\{x_n\}$ 是发散的, 习惯上也说 $\lim x_n$ 不存在.

•极限定义的简记形式

$$\lim_{n\to\infty} x_n = a \Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}^+, \, \underline{\exists} n > N \text{时, } \underline{\dagger} |x_n - a| < \varepsilon.$$

❖数列极限的几何意义

- □任意给定a的 ε 邻域(a- ε , a+ ε),
- •存在 $N \in \mathbb{N}^+$, 当n < N时, 点 x_n 可能落在邻域($a \varepsilon$, $a + \varepsilon$)内,
- •当n>N时,点 x_n 全都落在邻域($a-\varepsilon$, $a+\varepsilon$)内:



 $注: N 与 \varepsilon 有关, 但不唯一.$

确定 N 时, N 越大越合适.

例2 证明
$$\lim_{n\to\infty} \frac{n+(-1)^{n-1}}{n} = 1.$$

证明
$$|x_n - 1| = \left| \frac{n + (-1)^{n-1}}{n} - 1 \right| = \frac{1}{n}$$

$$\forall \varepsilon > 0, \ \mathbb{E}|x_n - 1| < \varepsilon, \ \mathbb{E}|x_n - \varepsilon| < \varepsilon$$

取
$$N = \left[\frac{1}{\varepsilon}\right]$$
, 当 $n > N$ 时,就有 $\left|\frac{n + (-1)^{n-1}}{n} - 1\right| < \varepsilon$

所以
$$\lim_{n\to\infty} \frac{n+(-1)^{n-1}}{n} = 1.$$
 注: 当 $\varepsilon > 1$ 时, $[\varepsilon^{-1}] = 0$. 此时, 可取 N 为任一正整数.

10 首页

上页

返回

下页

例3 设0<|q|<1,证明等比数列

$$1, q, q^2, \cdots, q^{n-1}, \cdots$$

$$\log_a x = \frac{\ln x}{\ln a}$$

的极限是0.

证明
$$\forall \varepsilon > 0$$
, 要使 $|x_n - 0| < \varepsilon$, 即要 $|q|^{n-1} < \varepsilon$,

即
$$(n-1)\ln|q| < \ln \varepsilon$$
,亦即 $n > 1 + \frac{\ln \varepsilon}{\ln|q|}$.

取
$$N = \left[1 + \frac{\ln \varepsilon}{\ln |q|}\right]$$

故
$$\lim_{n\to\infty}q^{n-1}=0$$

11

例4 证明
$$\lim_{n\to\infty}\frac{n+2}{n^2+n}=0.$$

i.e.
$$\forall \varepsilon > 0$$
, $\Re N = \left[\frac{1 - \varepsilon + \sqrt{\varepsilon^2 + 6\varepsilon + 1}}{2\varepsilon}\right]$

当
$$n > N$$
 时, 就有 $\left| \frac{n+2}{n^2+n} - 0 \right| < \varepsilon$

所以
$$\lim_{n\to\infty}\frac{n+2}{n^2+n}=0.$$

注:直接解不等式
$$|x_n-0| < \varepsilon$$
 得 $n > \frac{1-\varepsilon + \sqrt{\varepsilon^2 + 6\varepsilon + 1}}{2\varepsilon}$

12

首页

上页

返回

下页

结束

例4 证明
$$\lim_{n\to\infty}\frac{n+2}{n^2+n}=0$$
.

iE =
$$|x_n - 0| = \left| \frac{n+2}{n^2 + n} \right| < \frac{2n+2}{n^2 + n} = \frac{2}{n}$$

$$\forall \varepsilon > 0$$
, $\mathbb{E}|x_n - 0| < \varepsilon$

取
$$N = \left[\frac{2}{\varepsilon}\right]$$
, 当 $n > N$ 时, 就有 $\left|\frac{n+2}{n^2+n} - 0\right| < \frac{2}{n} < \varepsilon$

所以
$$\lim_{n\to\infty}\frac{n+2}{n^2+n}=0.$$

注: $N 与 \varepsilon$ 有关,但不唯一.确定N时,N越大越合适.

13

首页

上页

返回

下页

结束

例5 设 $x_n = \frac{n + \sin n}{n+1}$. 观察 $\lim_{n \to \infty} x_n =$ __?取 N =__,可 使当n > N时,有 $|x_n - 1| < 0.001$.

解 $\lim_{n\to\infty} x_n = 1$

$$|x_n - 1| = |\frac{n + \sin n}{n+1} - 1| = |\frac{\sin n - 1}{n+1}| \le \frac{2}{n+1}$$

要 $|x_n-1|$ <0.001,只要 $\frac{2}{n+1}$ <0.001,求得n>1999

取 N = 1999,可使当 n > N 时,有 $|x_n - 1| < 0.001$.

14

首页

上页

返回

下页

结束

❖关于 ε -N语言论证法

- 1. 若解不等式 $|x_n-a| < \varepsilon$ 可得出 $n > \varphi(\varepsilon)$, 取 $N = [\varphi(\varepsilon)]$. >>>
- 2. 若不等式 $|x_n-a| < \varepsilon$ 不易解时, 采取放大技巧:

$$|x_n-a| \le f(n)$$
.

所取的 f(n)要使得不等式 $f(n) < \varepsilon$ 容易解出 $n > \varphi(\varepsilon)$. 取 $N = [\varphi(\varepsilon)]$. >>>

注: 1.N与 ε 有关,但不唯一.确定 N 时,N 越大越合适.

2. 当[$\varphi(\varepsilon)$]<1时, 可取 N 为任一正整数.

$\lim x_n = a \Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}^+, \ \mathbf{n} > N$ 时, 有 $|x_n - a| < \varepsilon$.

例6 证明
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$
.

证明 记
$$a_n = \sqrt[n]{n} - 1 > 0 (n > 1)$$

$$(a+b)^n = \sum_{r=0}^n C_n^r a^{n-r} b^r$$

$$n = (1 + a_n)^n = 1 + na_n + \frac{1}{2}n(n-1)a_n^2 + \Lambda > 1 + \frac{1}{2}n(n-1)a_n^2$$

$$a_n^2 < \frac{2}{n}, \ a_n < \sqrt{\frac{2}{n}}$$

$$C_n^r = \frac{n!}{(n-r)!r!}$$

$$\forall \varepsilon > 0$$
,要 $|\sqrt[n]{n}-1| < \varepsilon$,即 $a_n < \varepsilon$,只要 $\sqrt{\frac{2}{n}} < \varepsilon$,即 $n > \frac{2}{\varepsilon^2}$,

取
$$N = \left[\frac{2}{\varepsilon^2}\right]$$
, 当 $n > N$ 时, 有 $|\sqrt[n]{n} - 1| = a_n < \sqrt{\frac{2}{n}} < \varepsilon$,

因此
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$
.

16

首页

上页

返回

下页

结束

❖定理1(极限的唯一性)

如果数列{xn}收敛,那么它的极限唯一.

证明 假设同时有 $\lim_{n\to\infty} x_n = a$ 及 $\lim_{n\to\infty} x_n = b$, 且 a < b.

接极限的定义,对于 $\varepsilon = \frac{b-a}{2} > 0$,存在充分大的正整数 N,**使当**n > N**时**,同时有

$$|x_n-a| < \varepsilon = \frac{b-a}{2} |x_n-b| < \varepsilon = \frac{b-a}{2},$$

因此同时有

这是不可能的. 所以只能有a=b.

- ❖定理1(极限的唯一性)
 - 如果数列{x"}收敛,那么它的极限唯一.
- ❖定理2(收敛数列的有界性)

如果数列 $\{x_n\}$ 收敛,那么数列 $\{x_n\}$ 一定有界.

注:

如果 $\exists M>0, \forall n\in\mathbb{N}^+, \mathbf{f}|x_n|\leq M, 则称数列\{x_n\}$ 是有界的; 如果这样的正数M不存在, 就说数列 $\{x_n\}$ 是无界的.

❖定理1(极限的唯一性)

如果数列{x"}收敛,那么它的极限唯一.

❖定理2(收敛数列的有界性)

如果数列 $\{x_n\}$ 收敛,那么数列 $\{x_n\}$ 一定有界.

证明 设数列 $\{x_n\}$ 收敛于a. 则 $\exists N \in \mathbb{N}^+$,当n > N 时,有 $|x_n - a| < 1 (= \varepsilon)$.

于是当n>N时,

 $|x_n| = |(x_n - a) + a| \le |x_n - a| + |a| < 1 + |a|$.

取 $M=\max\{|x_1|, |x_2|, \dots, |x_N|, 1+|a|\}, \forall n \in \mathbb{N}^+, 有|x_n| \le M.$

这就证明了数列{x_n}是有界的.

❖定理1(极限的唯一性)

如果数列{x"}收敛,那么它的极限唯一.

❖定理2(收敛数列的有界性)

如果数列 $\{x_n\}$ 收敛,那么数列 $\{x_n\}$ 一定有界.

•讨论

- 1. 如果数列 $\{x_n\}$ 收敛,那么数列 $\{x_n\}$ 一定有界. 发散的数列是否一定无界? 有界的数列是否收敛?
- 2.数列 $1,-1,1,-1,\cdots,(-1)^{n+1},\cdots$ 的有界性与收敛性如何?

❖定理1(极限的唯一性)

如果数列{x"}收敛,那么它的极限唯一.

❖定理2(收敛数列的有界性)

如果数列 $\{x_n\}$ 收敛,那么数列 $\{x_n\}$ 一定有界.

❖定理3(收敛数列的保号性)

如果数列 $\{x_n\}$ 收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,有 $x_n>0$ (或 $x_n<0$).

•推论

如果数列 $\{x_n\}$ 从某项起有 $x_n \ge 0$ (或 $x_n \le 0$),且数列 $\{x_n\}$ 收敛于a,那么 $a \ge 0$ (或 $a \le 0$).

❖定理4(收敛数列与其子数列间的关系)

如果数列 $\{x_n\}$ 收敛于a,那么它的任一子数列也收敛,且极限也是a.

注:

在数列 $\{x_n\}$ 中任意抽取无限多项并保持这些项在原数列中的先后次序,这样得到的一个数列称为原数列 $\{x_n\}$ 的子数列.

例如,数列 $\{x_n\}$: 1, -1, 1, -1, · · ·, $(-1)^{n+1}$ · · ·的一个子数列为 $\{x_{2n}\}$: -1, -1, -1, · · ·, $(-1)^{2n+1}$ · · ·.

❖定理4(收敛数列与其子数列间的关系)

如果数列 $\{x_n\}$ 收敛于a,那么它的任一子数列也收敛,且极限也是a.

•讨论

- 1. 数列的子数列如果发散,原数列是否发散?
- 2. 数列的两个子数列收敛, 但其极限不同, 原数列的收敛性如何?
 - 3. 发散的数列的子数列都发散吗?
 - 4. 如何判断数列1, -1, 1, -1, · · · , (-1)ⁿ⁺¹, · · · 是发散的?

作业

习题1-4 (P40):

1.

2.(2) (3)

 24
 首页
 上页
 返回
 下页
 结束
 铃